
Van der Waals theory of order - disorder transitions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 9633

(http://iopscience.iop.org/0953-8984/8/47/075)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 23:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/47
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 9633–9635. Printed in the UK

Van der Waals theory of order–disorder transitions

M Baus and R Achrayah
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Abstract. In analogy with the well-known Van der Waals theory for disordered fluid phases
we propose a simple analytic expression for the Helmholtz free energy of an ordered crystalline
phase. It is based on a free-volume approximation to the entropic contribution due to the hard-
core repulsions and a static lattice energy approximation to the contribution of the attractions.
In this way we are able to describe in a simple way phase transitions between two disordered
phases, between two ordered phases and between an ordered and a disordered phase in systems
of any spatial dimensionality.

1. The basic ideas of the Van der Waals theory

A system ofN non-interacting particles enclosed in a volumeV at temperatureT can
be described by the ideal- (id) gas (Helmholtz) free energy,Fid(N, V, T ). When the
interactions are switched on, the system’s free energy,F(N, V, T ), acquires an excess
(ex) contribution,Fex(N, V, T ) ≡ F(N, V, T ) − Fid(N, V, T ). These interactions, which
one imagines to be well described by a pair potentialV (r), can always be written as the
sum of repulsions and attractions. In the Van der Waals (VdW) theory one considers that the
excess free energy can likewise be written,Fex(N, V, T ) = FR

ex(N, V, T ) + FA
ex(N, V, T ),

as the sum of a contribution due to the repulsions (R) and the attractions (A). The main
characteristic of the repulsions is their hard-core character which provides the particles with
a proper volume and a hard-sphere behaviour. This reduces the freely accessible volume
from the total volume,V , to the free volume,αV , with α < 1 and (1− α)V being the so-
called excluded volume. If the repulsions are sufficiently harsh to be viewed as hard-sphere
(HS) repulsions,FR

ex(N, V, T ) ≡ FHS
ex (N, V, T ), then their contribution will be purely

entropic,FHS
ex (N, V, T ) = −T SHS

ex (N, V ), with the excess entropySHS
ex (N, V ) entirely due

to the reduction of accessible volume,FHS
ex (N, V, T ) = Fid(N, αV, T ) − Fid(N, V, T ) =

−NkBT ln α, or SHS
ex (N, V ) = −NkB ln α, kB being Boltzmann’s constant. If the pair

potentialV (r) is written, consequently, as the sum of a HS potential and some attraction,
sayVA(r), then the main effect ofVA(r) will be to provide the HS system with some mean
cohesion energy,FA

ex(N, V, T ) = EA
ex . This mean cohesion energy,EA

ex , can be written as
N times the mean potential energy due to the attractions

EA
ex = N

2

∫
dr ρ̄(r)VA(r)

as seen by a particle placed at the origin. Hereρ̄(r) is the distribution of particles around
the particle placed at the origin. In the VdW approximation the total excess free energy per
particle,Fex(N, V, T )/N = fex(ρ, T ), can thus be written as

fex(ρ, T ) = −kBT ln α(ρ) + 1

2

∫
dr ρ̄(r)VA(r) (1)
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Table 1. The hard-sphere packing fractions,φ = vρ, for d-dimensional hard spheres of diameter
σ and volumev (with v = σ for d = 1, v = (π/4)σ 2 for d = 2 andv = (π/6)σ 3 for d = 3)
at the order–disorder transition between a fluid phase (F) and a compact crystalline solid phase
(S) as obtained from equations (2) and (3) withVA(r) ≡ 0. Between brackets we quote the
simulation results [1] whereasφ0 = vρ0 andφcp = vρcp with ρ0, ρcp defined as in equations (2)
and (3). Equations (2) and (3) predict a hard-sphere transition to occur for any spatial dimension
d > 1.

d φ0 φcp φF φS

2 0.70 0.91 0.66(0.65) 0.78(0.72)
3 0.495 0.74 0.475(0.494) 0.625(0.545)

whereρ = N/V is the average number density.

2. Ordered and disordered phases

If, as we will assume, the interaction potential is given, then the HS diameterσ and the
attractionsVA(r) are known. To use (1) there remains then to be known the free-volume
fraction,α = α(ρ), and the site distribution ,̄ρ = ρ̄(r). In a disordered fluid-like phase the
distribution of sites is uniform and hence,ρ̄(r) = ρ, whereas the dimensionless quantity
α(ρ) will be a function of some dimensionless densityρ/ρo which decreases with increasing
ρ/ρ0 from α = 1 for ρ/ρ0 = 0 to α = 0 for ρ/ρ0 = 1, so thatρ0 is in fact the maximum
value ofρ for which the disordered phase can exist (α > 0). In view of the isotropy of the
fluid phase we simply put,α(ρ) = 1 − ρ/ρ0, and equation (1) yields then

fex(ρ, T ) = −kBT ln

(
1 − ρ

ρ0

)
+ 2πρ

∫ ∞

σ

dr r2VA(r) (2)

which is the celebrated VdW excess free energy for fluid-like or disordered phases.
Historically various choices forρ0 have been made. Here we will putρ0 at a value
halfway between its upper limit, the crystal close-packing density, and its lower limit,
the second virial coefficient value ofρ0. How this is to be done for ad-dimensional system
is discussed in more detail elsewhere [1]. In an ordered crystal-like phase the distribution
of sites runs over the discrete set of neighbours{rj} of the particle located at the origin,
ρ̄(r) = ∑

j δ(r − rj ) whereasα(ρ) is a decreasing function ofρ which vanishes at the
maximum density for which the ordered phase can exist, here the density of crystal close
packingρcp. In view of the anisotropy of the crystalline phase we writeα(ρ) as the product
of three one-dimensional factors:

α(ρ) =
(

1 −
(

ρ

ρcp

)1/3)3

whereby equation (1) reduces to

fex(ρ, T ) = −kBT ln

((
1 −

(
ρ

ρcp

)1/3)3)
+ 1

2

∑
j

VA(rj ) (3)

which is the excess free energy for ordered (crystalline) phases as advocated in [2]. The
free-energy expressions (2) and (3) can be easily generalized tod-dimensional systems
[1]. They contain no unspecified parameters except those which characterize the attractions
(VA(r)) and the ordered structure considered. They contain very basic physics but only in
an approximate way. The simple analytic form of (2) and (3) allows explicit expressions to
be obtained for many thermodynamic properties [1, 2, 3].
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3. Phase transitions

As is well known, equation (2) embodies a simple but realistic description of the disorder–
disorder or liquid–gas transition [2]. What is however not obvious from (2) is that the liquid
will not always exist, even when the temperature is below the critical point temperature
predicted by (2). For a complete description one has indeed to allow the ordered phases
described by (3) to compete with the disordered phases described by (2). As shown in detail
in [3], for attractions with a sufficiently short range the resulting order–disorder transition
will then always pre-empt the original disorder–disorder transition. These results corroborate
similar results obtained from more sophisticated theories [4]. This can be understood by
observing that the order–disorder HS transition (corresponding toVA(r) = 0) controls the
more general (VA(r) 6= 0) order–disorder transition whereas, as shown in [1, 3], the HS
transition obtained from (2) and (3) is already fairly realistic (see table 1). When the range
of VA(r) becomes extremely small, equation (3) leads moreover to a VdW loop in the
free energy of the ordered phase. This again corroborates results from more sophisticated
theories and from computer simulations [4]. Equations (2) and (3) do provide us with a
highly flexible and fairly realistic description of the phase transitions which can occur in
any system of particles with pair interactions which can be described as a HS repulsion plus
an arbitrary attraction,VA(r).
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